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Preparing students for proof type geometry problem solving has become a key issue for
mathematics educators. Prevailing instructional strategies have been shown to be
inappropriate to address the complexities of deductive geometry. In this report, we propose
a design of a learning environment to address the above issue. We argue that this model
has a potential to help students to make progress up to van Hiele Level 3 and to acquire
skills required to solving a range of proof type geometry problems.

Geometry has been recognised as a potential subject for solving problems in a wide
range of real life situations. It can foster the knowledge base with rich and effective
information that enhances spatial reasoning in making sense of the environment (National
Council of Teachers of Mathematics, 2000). In addition, future trends indicate that there
will be enormous opportunities in the exponentially growing visual technologies field for
people who possess geometry knowledge. Students start learning formal deductive
geometry including formal proof type problems at senior secondary level (SSL). If
successful this promotes logical thinking (Ernest, 1991), deductive reasoning (Polya, 1945)
and visual reasoning (Duval, 1995; Fischbein, 1993) more than any other subject at that
level. However, students rate it as their least favourite subject (Anderson, 1995) and they
demonstrate little interest and low achievement (Charalambos, 1997; Chinnappan, 1998).

Van Hiele Theory suggests that students in the same class may be at different thinking
levels of geometry: “… in any given classroom, one might find the teacher, text and
students function at different thinking levels” (Senk, 1989, p. 309). Teachers have
problems supporting student development of formal deductive reasoning when their
students are either disinterested or are scattered across several levels of understanding. No
single teaching strategy can possibly meet these diverse needs. Students may require
individualised support. In the study reported here, we address the instructional problem by
assessing the range of needs, translating these into a set of design principles, and applying
those principles to the development of a learning design prototype.

Theoretical Considerations

When information processing theory is applied to the process of solving well-
structured proof type geometry problems, four key events emerge. First, the student reads
the problem in the text to understand it (Analysis). As analysis occurs, the problem is
diagrammatically represented externally on a sketchpad as well as internally in working
memory (WM) (Representation). Representation stimulates a search of long-term memory
(LTM) for required information such as strategies (Planning) and useful operators. These
are used to transform the initial representation in WM until the goal is achieved (Use of



memory retrievals). Metacognition oversees these cognitive functions (Brown, Hedberg, &
Harper, 1994; Schoenfeld, 1985).

Geometry teachers have to facilitate this process through instructional strategies.
Research literature reveals that geometry at SSL has intrinsic difficulties that create
obstacles for the instructional process. This section poses some of them.

Sudden Shifts in Geometric Thinking Process: van Hiele Levels

According to the van Hiele theory (Clements & Battista, 1992; Senk, 1989) student
geometric thought develops in five discontinuous levels called van Hiele Level (VHLs)
forming four shifts to complete geometric thought. Transition (a shift) from one level to
another is very difficult as two levels belong to two different paradigms. The first shift is
from visual (van Hiele Level 0 - VHL 0) to analysis (VHL 1); the second is from analysis to
non-formal deduction (VHL 2); the third shift is from non-formal deduction to (formal)
deduction (VHL 3). This is the vital prerequisite for learning deductive geometry.

Senk (1989) found a significant correlation between van Hiele levels and proof writing
achievements. Students need to develop highly abstract concepts based on definitions,
postulates and axioms to learn formal deductive geometry. The new thinking process
opposes their familiar inductive reasoning in which concept development takes place
through generalisation of patterns and commonalities of concrete object-specific examples
(Senk, 1985).

Students at SSL may be scattered through all levels of geometric thought. Of 241
American students that Senk (1989) observed 27% were at VHL 0, 51% at VHL 1, and 15
were at VHL 2 confirming only 7% were ready to start learning activities of deductive
geometry. This implies that the instructional process will fail unless remedial measures are
taken to support students to make the prerequisite shifts.

Complexity of Geometry Problem Solving Processes

Geometry problems differ from other mathematical problems, as geometry problems
have no set procedures or algorithms. Students use logic extensively and this can lead to
difficulties:

Geometry proof problem solving is hard. … Of the 27 definitions, postulates and theorems that are
introduced prior to such a problem in a traditional curriculum, 7 can be applied at the beginning of
this problem. Some of these rules can be applied in more than one way yielding 45 possible
inferences that can be made from this problem’s givens. … The number of options continues to
increase at further layers … at minimum it takes 6 such layers of inferences to reach the problem
goal (Koedinger, 1993, pp. 16–17)

Most of these inferences are correct but irrelevant to the problem at hand and novices
have difficulty discerning relevance. For instance the number of inferences related to a given
square with its centre exceeds 50 relationships, while only one or two may be relevant to a
given problem. Thus inferring is a critical skill. Backward inference, forward inference, bi-
directional inference, and drawing auxiliary lines are not rules but heuristics that reduce
unnecessary inference. The relevance of general strategies like heuristics and planning on
geometry has been highlighted (Chinnappan & Lawson, 1996; Koedinger, 1993; Schoenfeld,
1985).



Visual Representation of Geometry Concepts and Relationships

Although proof type problems are given in words, the actual problem execution space
is diagrammatic. Once the problem is precisely converted into a diagram, the student solves
the problem on the diagram itself. The diagram represents the problem situation with
necessary information. Effective diagrammatic representation of the problem promotes
intuition for conjectures (Charalambos, 1997). The diagram also represents geometric
knowledge (Koedinger, 1993) including concepts and schemata (Chinnappan, 1998).
Therefore, it involves visual reasoning. Thus, visual representation and related strategies
play a dominant role in proof type geometry problem solving.

In the problem solving process, diagrams are not perceived as holistic images. Their
parts are considered in pairs to obtain new information or to make conjectures. Students
have to separate relevant parts in complex diagrams. As there is no universal rule to
separate them, students find it difficult when they lack experience. Teachers find it difficult
to help students as selection depends on the situation rather than a rule. Effective visual
strategies may be critical to support students learning geometry problem solving.

Role of Worked Examples in Learning Proof Type Geometry Problems

The novelty of proof type problems makes no provision for instructions to foster
skills in making inferences and diagrammatic reasoning as rules or principles. They are
developed as problems become familiar. The commonly used strategy for familiarisation is
worked examples.

Presenting critical knowledge along with worked examples is a crucial issue. Although a
teacher usually explains everything to the class, they are only likely to record the solution
on the board in a format that matches the textbook. Students record this in their workbooks
for future reference. They do not see any justification for making decisions on inference
selection or figural selection in worked examples in the textbook or workbook. They will
also miss the logical flow of generating the solution (Anderson, 1995; Koedinger, 1993).
Thus the expert’s thought process is not modelled in the worked examples for novice use.
Crucial information can be provided through explanatory information.

Providing explanatory information has been extensively evaluated in the context of
cognitive load theory (Sweller, 1999). As the execution space exists on the diagram and the
solution is presented in text form, interrelated visual information is physically separated.
Too much explanatory information may be redundant. When the worked example is only
the solution the student might not need to think. In summary, worked examples should not
cause cognitive load.

The theoretical consideration concludes that students have difficulties in constructing
an extensive knowledge base required for formal proof. Van Hiele Theory suggests that
students at SSL are a highly heterogeneous group. To engage in formal deductive proof
type geometry problems they will need to develop planning skills and heuristics, represent
and interpret complex diagrams, and are most likely to gain insight into this process
through the strategy of worked examples.



Method

Although a three-phase method was used in this study, the focus of this paper is on
phases two and three. Phase One details are provided, as it is contextually critical to
understand the latter phases.

Participants. The participants in Phase One of this study were 166 students from four
schools in Sri Lanka.

Instrument. Three tasks were designed—a Geometry Problem Solving (GeoPS) Task, a
Geometry Content Knowledge (GeoCK) Task, and a General Problem Solving (GenPS)
Task. Each comprised a one-hour written test.

Scores on student mathematical problem solving (MatPS) were determined from
continuous assessment records.

Procedure. In Phase One, the participants were tested to determine the predictive
indicators for success in the geometry problem solving process. Students completed the
three tasks—Geometry Problem Solving (GeoPS), Geometry Content Knowledge
(GeoCK) and General Problem Solving (GenPS). Their scores on mathematical problem
solving (MatPS) were standardised. It was assumed that these MatPS scores would
represent student’s inductive and non-formal deductive reasoning skills. The statistical
package SPSS was used to perform a linear multiple regression analysis of all scores.

Phase Two took the results of Phase One and coupled them with an extensive literature
review of both theoretical considerations of formal deductive thinking in proof type
geometry problems and reported teaching concerns. These were used to identify
instructional needs as a basis for the design of a supportive learning environment.

Phase Three took a specific instructional topic—congruency of triangles—as an
example around which to develop an instructional prototype of a key component of the
Phase Two environment —the use of the worked example.

Results and Discussion

The results of Phase One are not reported in depth here. In summary, the regression
analysis yielded the finding that GeoPS is mainly dependent on GeoCK, though the three
independent variables (GeoCK, GenPS, MatPS) are interrelated.

Phase Two looked at the implications of this for a learning environment to support
formal deductive reasoning in proof type geometry problems. Information related to proof
type geometry problems is highly specific to the domain of geometry therefore geometry
knowledge is the critical prerequisite for solving such problems. Thus, a device for
providing geometry content knowledge is a major component of the learning environment.

This content knowledge corresponds to the VHL 3. However, as students are at
multiple levels some of them are not in a position to perform these activities. They should
be provided with remedial activities and then they should be promoted to VHL 3.
Appropriate maturity at VHL 3 is a prerequisite to proof type problem solving and those
who have that capacity are ready to start proof type problem solving.



Figure 1. Screening to establish appropriate student support.

A supportive learning environment should provide the means to identify these three
groups: students ready to problem solve; students still learning at VHL 3; and students
below VHL 3. Figure 1 indicates the need for some preliminary screening process to allow
students to access material appropriate to their level of understanding.

Students who are ready to solve problems are directed to Problem Solving. Students
who can perform learning activities at VHL 3 are directed to Concepts and Fundamentals.

The Lower van Hiele Levels in Figure 1 represents all students who are below VHL 3,
however they could not be treated as a ubiquitous group. According to the theory, each
student must complete all previous VHLs, therefore students would progress through a
structure such as that represented in Figure 2.

Figure 2. Suggested mechanism for completion of lower van Hiele levels.

The implications of this theory are considerable. To support the content knowledge
base for formal deductive proof type problems in geometry, you would need to consider
the design of an integrated system for the whole of geometry, if you were to provide
support for a class where students could be at any van Hiele level.

Ideas for preliminary screening could be obtained from the diagnostic tests developed
by Mayberry (1981) or Lawrie (1998). The activities within a level could be designed in
accordance with van Hiele phases of instruction: inquiry, directed orientation, explicitation,
free orientation and integration. Problems could be incorporated simultaneously as
activities progress. Mistretta (2000), Lawrie (1998), Clements and Battista (1992), Fuys,
Geddes, & Tischer. (1988) and Mayberry (1981) provide ideas for activities. Each level
would end with a post-test that would serve as a passport to the next level.

Phase One results and van Hiele theory suggest the need for this large-scale multi-level
design. Instructional strategies within a level might differ from those required to support
the transition or shift in paradigm to the next level.



The literature was a rich source of ideas regarding other needs this learning environment
should address. Each of the concerns presented in the theoretical considerations has design
implications. The complexity of the geometry problem solving process and the difficulty
novices experience determining the relevance of inferences could be addressed through
multiple examples where thought processes are shared and modelled. The vital nature of
visual representation in geometry suggests students may value modelling of transfer of
problem information into diagrammatic form, and ways to interpret information on a
diagram. This could be provided through a range of strategies, such as a “think-aloud” that
accompanies a movie demonstration; sequential unfolding of a problem with diagrammatic
representation alongside text; or embedded annotations within a movie.

Worked examples are a way to familiarise students with novel problems. The question
arises regarding the cognitive load afforded by explanatory information. There is also a need
to deliver metacognitive support in such a way that its cognitive load does not negate its
benefits.

Information processing theory unpacks a series of steps in the problem solving
process—analysis, representation, planning and use of knowledge retrievals. The use of a
series of guided steps through problems might reduce the cognitive load of rich
metacognitive support and provide a process framework to assist planning and self-
regulation.

Phase Three took these core design ideas from the conceptual “big picture” level, and
through an iterative and collaborative design process, applied them to the topic of
congruency of triangles. Each design meeting varied in one or all of the following three
aspects—the scope of the tool design discussed, the activity sequence for the worked
example, or the nature of metacognitive support that would be provided.

Phase Two design principles were important to keep prototype ideas on track. Initial
diagrammatic representation of the flow through a worked example was our starting point.
These steps were related to information processing, and the terms were translated into
terms students would understand. Example problems were then used to test and refine this
structure in a process of rapid prototyping. The development environment required a
simple web authoring tool and a graphics program for the development of diagrams.

Problems were not seen in isolation. Early discussion focused on the initial student
decision to seek feedback, or gain access to a richly guided support process. If the support
option was chosen, then students ought to be able to attempt a similar problem. Having
attempted (successfully or with support) the first problem, a more advanced problem
would allow them to test their understanding. Thus worked examples were clustered as a
repeating structure of core elements illustrated in Figure 3.



Figure 3. Design for presenting worked examples.

Worked examples are provided in sets. Each set has a base problem, a similar problem,
and an advanced problem. The similar problem provides a second attempt and the advanced
problem represents learning transfer. Students are expected to complete the problem off-
screen in a workbook. Then they seek feedback or process guidance, both of which provide
worked examples with extended information.

Process guidance helps develop problem-solving strategies. This structure is presented
as a three-column table. The first column provides instructions to identify events in
geometry problems in general. These steps are closely related to events in the problem
solving process. For instance, reading the problem, drawing the diagram, marking givens on
the diagram and writing givens and proof are related to analysis and representation.
Thinking about the key idea and missing information are related to a searching or planning
event. Deducing new information and deriving solutions are related to the use of memory
retrievals.

The second column of the process guidance provides information to familiarise
students with the sub-goaling process of the particular problem. For instance, the first goal
has been decomposed into 12 sub-goals. Process guidance across a range of different
problems helps students to generalise that problem planning differs from problem to
problem.

The third column of the process guidance provides links to illustrate the step. Essential
background knowledge is embedded in these steps for “just in time” access.

When data and theoretical considerations are balanced with rapid prototype
development, instruction can be designed from both a conceptual and grounded
perspective. Early student feedback lends support to the core design components of this
prototype. It seems the process guidance and problem loop structure are effective ways to
engage students in the development of formal deductive problem solving in geometry.
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